

## ENVIRONMENTAL RISK ASSESSMENT USING THE ERICA TOOL

BY TOXLEARN4EU FUNDED BY ERASMUS+





# Problem based learning: Environmental risk assessment using the ERICA tool

BNEN – Advanced Course in Radiation Protection Nathalie Vanhoudt, Jordi Vives i Batlle

#### **Examples for environmental risk assessment using the ERICA tool**

(all data provided are example data and will only by chance reflect reality)

A river system is contaminated by a Nuclear Power Plant.

We have two series of data:

- 1. Predicted water concentrations downstream the discharge point for the period 1992 to 2007 (Table 1)
- 2. Measured environmental concentrations in river water, sediment and some biota for an upstream and downstream location for the year 2007 (Table 2)

We know hardly anything about the environment that may be affected. We know that the pH from river water is generally slightly alkaline. With respect to the affected ecosystems, the only information we have is that there are some protected fish species thriving in the river like Atlantic salmon (*Salmo solar* - pelagic fish), eel (*Anguilla angulla* – benthic fish) and bullhead (*Cottus gobio gobio* – benthic fish).

The terrestrial environment is unlikely to be affected but every ten years the river sediments are dredged and put on the river borders.

There are some natural reserves in the vicinity of the river where badge, the bird stonechat and the bat are protected species.

Tables 3a and 3b give some info about the characteristics of mentioned protected species.

What should you do?

- 1. Perform a Tier 1 impact assessment for the aquatic ecosystems based on the predicted environmental concentrations. Remember that in Tier 1 assumptions are conservative.
- 2. If required (it will be) perform a Tier 2 impact assessment for aquatic and terrestrial ecosystems based on the predicted environmental concentrations using as much as possible available information
- 3. Perform a Tier 2 impact assessment based on the measured environmental concentrations (Table 2). What sensible assessments could one make?
- 4. Make an assessment in 2007 for a natural reserve situated 500 m downstream from the river discharge point and on the same riverbank to that of the discharge point, using the ERICA river model. You will have to deduce the flow rate, and from the concentrations measured, the discharge rates for the relevant radionuclides.

Table 1: Water concentrations predicted (Bq/m<sup>3</sup>)

|         |       | Water concentrations, Bq/m <sup>3</sup> |       |       |       |       |       |        |       |       | Bq/m³ |       |       |       |       |       |         |
|---------|-------|-----------------------------------------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| Year    | 1992  | 1993                                    | 1994  | 1995  | 1996  | 1997  | 1998  | 1999   | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | Average |
| Ag-110m | 0.0   | 18.7                                    | 15.5  | 16.4  | 24.0  | 16.6  | 14.1  | 8.3    | 11.4  | 26.6  | 22.2  | 19.0  | 18.5  | 11.5  | 10.7  | 8.5   | 15      |
| Am241   | 0.2   | 0.4                                     | 5.0   | 1.0   | 0.3   | 3.5   | 0.1   | 0.2    | 0.1   | 0.4   | 0.1   | 0.5   | 1.5   | 2.5   | 10.0  | 7.5   | 2       |
| Co60    | 23.2  | 16.8                                    | 11.4  | 8.8   | 42.5  | 10.5  | 7.7   | 6.4    | 6.3   | 8.8   | 9.6   | 8.5   | 13.9  | 8.7   | 17.0  | 10.2  | 13      |
| Cs134   | 8.0   | 7.0                                     | 5.2   | 0.8   | 3.6   | 2.1   | 1.2   | 0.5    | 0.3   | 0.5   | 1.6   | 5.9   | 10.4  | 3.9   | 5.3   | 2.8   | 4       |
| Cs137   | 11.5  | 9.7                                     | 7.2   | 2.5   | 6.2   | 3.8   | 5.2   | 1.4    | 1.7   | 2.1   | 2.9   | 5.7   | 10.5  | 6.3   | 10.1  | 5.1   | 6       |
| Fe55    | 0.00  | 0.42                                    | 0.28  | 0.22  | 1.06  | 0.26  | 0.19  | 0.16   | 0.16  | 0.22  | 0.24  | 0.21  | 0.35  | 0.22  | 0.42  | 0.25  | 0.31    |
| Н3      | 59333 | 58733                                   | 64291 | 68743 | 74558 | 78814 | 54816 | 111026 | 55095 | 68416 | 99333 | 72500 | 75833 | 76667 | 73500 | 95167 | 74177   |
| Nb95    | 5.0   | 12.1                                    | 3.4   | 5.5   | 21.0  | 5.1   | 3.3   | 3.6    | 4.7   | 18.8  | 8.3   | 6.4   | 9.3   | 5.3   | 4.2   | 12.2  | 8       |
| Sr89    | 0.0   | 3.9                                     | 2.9   | 1.0   | 2.5   | 1.5   | 2.1   | 0.6    | 0.7   | 0.8   | 1.2   | 2.3   | 4.2   | 2.5   | 4.1   | 2.0   | 2       |
| Sr90    | 0.0   | 1.9                                     | 1.4   | 0.5   | 1.2   | 0.8   | 1.1   | 0.3    | 0.3   | 0.4   | 0.6   | 1.2   | 2.1   | 1.3   | 2.0   | 1.0   | 1       |

#### Table 2: Environmental concentrations (measured)

|         |                     | UPST       | REAM       | DOWNSTREAM |                     |            |            |
|---------|---------------------|------------|------------|------------|---------------------|------------|------------|
|         | sediment            | mosses     | waterplant | Dreissena  | sediment            | mosses     | waterplant |
|         | Bq kg <sup>-1</sup> | Bq kg⁻¹ FW | Bq kg⁻¹ FW | Bq kg⁻¹    | Bq kg <sup>-1</sup> | Bq kg⁻¹ FW | Bq kg⁻¹ FW |
| Ag-110m | 10                  |            |            |            | 51                  | 5          |            |
| I-131   | 335                 |            |            |            | 271                 |            |            |
| Cs-137  | 23                  | 10         | 0.83       |            | 42                  | 4          |            |
| Ra-226  | 84                  | 163        | 2.25       | 2.18       | 101                 | 53         | 4.75       |
| Ra-228  | 62                  | 153        | 4.25       | 3.25       | 70                  | 58         | 5.25       |
| Th-228  | 48                  | 23         | 0.90       | 0.90       | 62                  | 14         | 3.50       |
| Co-58   |                     |            |            |            | 267                 | 102        |            |
| Cs-134  |                     |            |            |            | 24                  | 2          |            |

#### Table 3a: dimensions of the aquatic protected species

|                  | Dimensions |          |          |          |      | Эссира | ncy fa | ctor  |               |
|------------------|------------|----------|----------|----------|------|--------|--------|-------|---------------|
|                  | M (kg)     | A(cm)    | B(cm)    | C(cm)    | Sedi | iment  | V      | /ater |               |
|                  |            |          |          |          | In   | On     | In     | On    |               |
| Bullhead         | 2.62E-04   | 2.00E+00 | 5.00E-01 | 5.00E-01 |      | 1      |        |       | A Contraction |
| Anguilla angulla | 1.57E+01   | 1.00E+02 | 2.00E+01 | 1.5E+01  |      | 1      |        |       |               |
| Atlantic salmon  | 1.57E+01   | 1.00E+02 | 2.00E+01 | 1.5E+01  |      |        | 1      |       |               |

#### Table 3a: dimensions of the terrestrial protected species

| Reference organism –                          |              | Dimens   | Dimensions |          |        | cupancy | factor  |  |
|-----------------------------------------------|--------------|----------|------------|----------|--------|---------|---------|--|
| Terrestrial ecosystem                         | $M(k\sigma)$ | A(cm)    | P(cm)      | C(cm)    | In air | On soil | In coil |  |
| Badger                                        | 1.00E+01     | 4.70E+01 | 1.8E+01    | 1.8E+01  | in an  | 0.2     | 0.8     |  |
| Stonechat, sedge warbler<br>(very small bird) | 1.50E-02     | 6.0E+00  | 2.20E+00   | 1.80E+00 | 0.5    | 0.5     |         |  |
| Flying mammal (bat)                           | 1.50E-02     | 6.0E+00  | 2.20E+00   | 1.80E+00 | 0.5    | 0.5     |         |  |

#### **Additional tables**

Table A1: Water concentrations

|         | Water concentrations |         |         |  |  |  |  |
|---------|----------------------|---------|---------|--|--|--|--|
|         | Bq/m³                | Bq/l    | Bq/l    |  |  |  |  |
|         | Max                  | Max     | Average |  |  |  |  |
| Ag-110m | 27                   | 0.027   | 0.015   |  |  |  |  |
| Am241   | 10                   | 0.010   | 0.002   |  |  |  |  |
| Co60    | 43                   | 0.043   | 0.013   |  |  |  |  |
| Cs134   | 10                   | 0.010   | 0.004   |  |  |  |  |
| Cs137   | 10                   | 0.010   | 0.006   |  |  |  |  |
| Fe55    | 1.06                 | 0.00106 | 0.0003  |  |  |  |  |
| Н3      | 111026               | 111.026 | 74.177  |  |  |  |  |
| Nb95    | 21                   | 0.021   | 0.008   |  |  |  |  |
| Sr89    | 4                    | 0.004   | 0.002   |  |  |  |  |
| Sr90    | 2                    | 0.002   | 0.001   |  |  |  |  |

#### Table A2: Sediment/soil concentrations

|         | Bq/kg sediment |
|---------|----------------|
|         | Average        |
| Ag-110m | 1.32E+03       |
| Am241   | 1.76E+03       |
| Co60    | 2.23E+03       |
| Cs134   | 5.90E+01       |
| Cs137   | 9.20E+01       |
| Fe55    | 3.10E+02       |
| Н3      | 7.41E+01       |
| Nb95    | 4.00E+00       |
| Sr89    | 1.87E-01       |
| Sr90    | 9.37E-02       |

Table A3: Kd values for slightly alkaline environments

|         | pH 7 - 8  |             |  |  |  |  |
|---------|-----------|-------------|--|--|--|--|
|         | Kdw(l/kg) | Kdw (m3/kg) |  |  |  |  |
| Co-60   | 1.70E+05  | 1.70E+02    |  |  |  |  |
| Co-58   | 1.70E+05  | 1.70E+02    |  |  |  |  |
| Sr-89   | 9.30E+01  | 9.30E-02    |  |  |  |  |
| Sr-90   | 9.30E+01  | 9.30E-02    |  |  |  |  |
| Nb-95   | 5.00E+02  | 5.00E-01    |  |  |  |  |
| Cs-134  | 1.60E+04  | 1.60E+01    |  |  |  |  |
| Cs-137  | 1.60E+04  | 1.60E+01    |  |  |  |  |
| Fe55    | 1.00E+04  | 1.00E+01    |  |  |  |  |
| Ag-110m | 8.30E+04  | 8.30E+01    |  |  |  |  |
| Am-241  | 8.50E+05  | 8.50E+02    |  |  |  |  |
| H-3     | 1.00E+00  | 1.00E-03    |  |  |  |  |

Table A4: CR-values for Fe: own literature search

| Fe-CR      |           |           |             |           |            |           |            |             |             |
|------------|-----------|-----------|-------------|-----------|------------|-----------|------------|-------------|-------------|
|            |           |           |             |           |            |           |            |             |             |
| Reference  | Ecosysten | Species g | Species co  | Latin nam | Organ      | CF (Bq/kg | g FW/Bq/L  | AM          | GM          |
| Poston an  | Freshwate | Fish      | FISH        |           | muscle     | 100       | ALL        | 951.8571    | 502.8765    |
| Poston an  | Freshwate | Fish      | FISH        |           | muscle     | 100       | MUSCLE     | 261.1111    | 230.1963    |
| Poston an  | Freshwate | Fish      | Yellow per  | rch       | muscle     | 190       | WHOLE F    | 1966.667    | 1871.219    |
| Poston an  | Freshwate | Fish      | piscivorou  | ıs fish   | muscle     | 250       |            |             |             |
| Poston an  | Freshwate | Fish      | Coho saln   | on        | muscle     | 260       |            |             |             |
| Poston an  | Freshwate | Fish      | Lake trout  |           | muscle     | 270       |            |             |             |
| Poston an  | Freshwate | Fish      | Brown tro   | ut        | muscle     | 280       |            |             |             |
| Poston an  | Freshwate | Fish      | Whitefish   |           | muscle     | 360       |            |             |             |
| Poston an  | Freshwate | Fish      | FISH        |           | muscle     | 540       |            |             |             |
| Poston an  | Freshwate | Fish      | Spottail sh | niner     | whole fish | 1300      |            |             |             |
| Poston an  | Freshwate | Fish      | planktivor  | ous fish  | muscle     | 1600      |            |             |             |
| Poston an  | Freshwate | Fish      | Smelt       |           | whole fish | 1800      |            |             |             |
| Poston an  | Freshwate | Fish      | Alewife     |           | whole fish | 2800      |            |             |             |
| Coetzee, I | Freshwate | Fish      |             |           | Gills      | 3476      | took max v | alue from   | Table 9; va |
|            |           |           |             |           |            |           |            |             |             |
|            |           |           |             |           |            |           |            |             |             |
|            |           |           |             |           |            | CF (Bq/kg | dry weigh  | t / Bq/kg s | oil)        |
| IAEA TRS   | 472       | Pasture   |             |           | upper part | 0.002     |            |             |             |

ß

### Table A5: Origin of assigned concentration ratios (CR) for Fe for considered reference organisms in terrestrial ecosystems

| Reference Organisms         | CR-Fe   |                    |
|-----------------------------|---------|--------------------|
| Amphibian                   | 0.00738 | ERICA value for Co |
| Annelid                     | 0.2665  | ERICA value for Co |
| Arthropod-detritivorous     | 0.2665  | ERICA value for Co |
| Bird                        | 0.00337 | ERICA value for Co |
| Flying insect               | 0.0737  | ERICA value for Co |
| Grasses & Herbs             | 0.002   | TRS 472            |
| Lychen & briophytes         | 0.0801  | ERICA value for Co |
| Mammal - large              | 0.0574  | ERICA value for Co |
| Mammal - small burrowing    | 0.0574  | ERICA value for Co |
| Mollusc - gastropod         | 0.2665  | ERICA value for Co |
| Reptile                     | 0.019   | ERICA value for Co |
| Shrub                       | 0.0136  | ERICA value for Co |
| Mammal (Badger)             | 0.0574  | ERICA value for Co |
| Mammal (Bat)                | 0.0574  | ERICA value for Co |
| Very small bird (stonechat) | 0.00337 | ERICA value for Co |

Table A6: Origin of assigned concentration ratios (CR) for Fe for considered reference organisms in aquatic ecosystems

| Reference organism  | CR-Fe  |                        |
|---------------------|--------|------------------------|
| Amphibian           | 210.0  | ERICA 2.0 value for Co |
| Benthic fish        | 1870.0 | own compilation        |
| Bird                | 389.8  | ERICA 2.0 value for Co |
| Crustacean          | 1875.0 | ERICA 2.0 value for Co |
| Insect larvae       | 4685.0 | ERICA 2.0 value for Co |
| Mammal              | 389.8  | ERICA 2.0 value for Co |
| Mollusc - bivalve   | 4685.0 | ERICA 2.0 value for Co |
| Mollusc - gastropod | 4685.0 | ERICA 2.0 value for Co |
| Pelagic fish        | 1870.0 | own compilation        |
| Phytoplankton       | 564.0  | ERICA 2.0 value for Co |
| Reptile             | 11.73  | ERICA 2.0 value for Co |
| Vascular plant      | 927.0  | ERICA 2.0 value for Co |
| Zooplankton         | 4685.0 | ERICA 2.0 value for Co |

Note This table has been updated from previous years' courses due to update of ERICA to version 2.0, meaning that default values for Co gave slightly changed with the updating of the ERICA database.