

MINING CONTROVERSIES: PUBLICK HEALTH RISKS VERSUS ECONOMIC BENEFITS

BY TOXLEARN4EU FUNDED BY ERASMUS+

METHOD	Problem-base learning (PBL)
DURATION	5 days (duration can be adjusted)
STUDENT WORKLOAD	6-7 hours/day
PROJECT TILE	Mining Controversies: Public Health Risks versus Economic Benefits
PROJECT CONTEXT	Human populations exposed to mining contamination-OreValley case
SUBJECT/COURSE	Toxicology
OTHER SUBJECT AREAS	Ecotoxicology, Human Biomonitoring, Risk/Hazard identification and evaluation, Risk Communication
SUPPORTING MATERIAL/ DOCUMENTATION	Online courses within ToxLeran4EU project WP3, WP4, WP5 (available on toxlearn4eu.eu/) Students should consult materials/bibliography related to biological and environmental endpoints, environmental exposure limit values to contaminants (either national or international) for general population (e.g WHO) and workers (e.g EEA, OSHA, NIOSH,), and the International Agency for Research on Cancer (IARC) (monographs). Other sources include FAO/WHO (Joint Codex Alimentarius Commission. Food additives and contaminants. Food Standards. CXS 193e PDF)
IMAGES	Images (Orevalley logo and "aerial photo") were created using Adobe Firefly. Final "photo" was further edited using microft office tools

PBL PROJECT DESIGN TEMPLATE

DISCLAIMER: The scenario depicted in this PBL is a case study created for educational purposes as part of ToxLearn4EU project. It is designed to facilitate problem-based learning in the subjects of Toxicology and related areas. Names and descriptions are fictional and any resemblance to, actual group of persons, living or dead, locations or actual events is purely coincidental.

GOAL	Assess the potential health impact resulting from mine contamination, using environmental and biological data.
	Train on tools for hazard identification, risk assessment, and risk communication.
	Develop skills in interdisciplinary collaboration to synthesize findings and propose sustainable solutions.
	Engage in discussions and critical evaluations to enhance understanding of public health policies and community engagement strategies in response to environmental risks.
ENTRY EVENT:	A special report by the principal news channel has revealed that the Mining Company is seeking to renew its 100-year-old license to continue and expand operations at the OreValley mines. It also reports that an environmental activist group known as EcoCypher carried out biological and environmental analysis that reveal the environmental and health risks associated to the mine exploitation. The group threatens to publish online these findings.
	Following the news report, although no documents were published, misleading information and incorrect data began circulating on social media, both condemning and supporting the mine's expansion plans, resulting in widespread panic among OreValley and surrounding village populations. Local populations are strongly dependent on agriculture, farming and mining activity.
	The OreValley village authority seized the EcoCypher documents and has scheduled an initial general assembly with key stakeholders to address this issue. Representatives from four main societal groups— the Community, the Mining Company, Insurance Companies/Mining Workers' Union, and Environmental Activists—will participate in this first discussion, which is set to take place within the next five days. All documentation will be given upon request.
ROLE/ CHALLENGE	Divide the class into 4 main groups representing:
	- Community
	- Mining Company
	- Companies/Mining Workers' Union
	- Environmental Activists

	The village local authority group that will mediate the discussion may include the teacher and students.					
	These groups will present arguments science driven to defend their position in the general assembly					
AUTHENTIC AUDIENCE	Optional: e.g. local Environmental activists, Municipalities representatives (educational departments), Education Councils or Committees. This PBL can be also extended to include other students and/or the academic community, particularly in the fields of Health, Social Communication, Sociology, Psychology, Management, and Economics.					
SITUATION	First meeting held by the village local authority with representatives of 4 main stakeholders to discuss if the Mine Company should continue and expand or if there is evidence that it should be closed due to its impact in the environment and human health.					
PRODUCT/PERFORMANCE	- Data-driven discussion on Public Health Risks versus Economic Benefits					
	 Data sheets with results from environmental and human biomonitoring data are available and can be provided upon request 					
	- ToxLearn4EU project tools and lectures					
DRIVING QUESTION	Orevaley mine: a public health problem? or an essential economic resource for the region?					
CONTENT AND SKILLS STANDARDS/21 st COMPETENCIES	 Collaboration between peers Communication skills Critical Thinking 					
TOOLS (can be adjusted)						
Learning	Assessment of environmental contamination and its health impacts.					
Outcomes/Targets	Understanding mining activities' socioeconomic implications.					
	Critical analysis of environmental policy and community advocacy.					
	Data interpretation and biomonitoring analysis.					
Checkpoints/Formative Assessments	 Review and analysis of environmental monitoring data (e.g., soil, water, dust). 					
	Discussion on biomonitoring results in humans.					
	Draft position statements for each stakeholder group.					
	Feedback from teachers and peers on presentations.					

Instructional Strategies For All Learners	 Provide real or simulated environmental and human biomonitoring data.
	 Facilitate group discussions and role-play preparation.
	 Optional: invite experts (if available) to guide students on specific topics.
Final Product(s)	A simulated municipal assembly presentation, including stakeholder arguments and scientific data, leading to a group decision.
Resources	Staff and/or Facilities: Classrooms or virtual collaboration tools.
	 Technology/Equipment: Computers, projectors, or online data-sharing platforms.
	 Materials: Access to simulated or real-world data sets, environmental and health case studies.
Reflection Methods	 Individual journals summarizing learning outcomes and challenges.
	 Whole-class discussions on group dynamics and decision-making processes.
	 Surveys to evaluate understanding and engagement.
	 Focus groups to refine ideas and arguments.
PBL EVENT PLANNING	3 CALENDAR
DAY 1: Problem presentatio	n
Duration: 6-7h	
Aim: Introduce the project and	set the stage to students
Activities:	
• Present the problem.	

- Facilitate a class discussion to explore initial reactions and perspectives on the issue.
- Assign stakeholder roles (community, mining company, insurance companies/mining workers union, environmental activists).
- Provide a project overview, including objectives, deliverables, and timelines.

Day 2: Individual group discussion

Duration: 6-7h

Aim: Develop strategic approaches, structure the workflow, and assign tasks to ensure effective progress for the next stages of the PBL.

Activities:

- Online research of similar case-studies (focus on mine contamination sites).
- Identify strategies/tools used and examine scientific data supporting risk assessments to inform their approach.
- Design a collaborative plan outlining tasks, deadlines, and responsibilities.

Optional: summary table outlining tools and strategies used in each case, their effectiveness, and gaps

Day 3: Data Analysis

Duration: 6-7h

Aim: Understanding the environmental and health impacts of mining contamination.

Activities:

- Distribute environmental and human biomonitoring datasets (e.g., contamination levels in dust, water, and vegetables).
- Guide students in analysing and interpreting the data relevant to their stakeholder roles
- Facilitate group discussions to develop preliminary arguments based on evidence.

Day 4: Preparation for Debate

Duration: 6-7h

Aim: Develop stakeholder-specific positions and prepare for the municipal assembly.

Activities:

- Each stakeholder group drafts a position statement addressing the key concerns of their role
- Each stakeholder group should organize arguments and defence positions
- Teacher may provide feedback and suggestions for refining arguments.
- Before the final debate, students participate in practice sessions.

Key Considerations:

- What are the strongest data supporting your position?
- Does your position address public health, economic and environmental concerns?
- What challenges exist in implementing your recommendations?

Presentation may include:

- Overview of the PBL
- Data that support their position
- Proposed strategies for risk mitigation and communication
- Challenges, limitations, and policy implications

Optional: a structured summary of their key points, arguments, and counterarguments

Day 5: Preparation for Debate & Debate

Duration: 6-7h

Aim: Facilitate an interdisciplinary debate where groups present their findings, critically evaluate different perspectives, and refine their recommendations

Activities:

- **Debate Structure and Rules Explanation** (max 15 min). The role of the Moderator is to introduce the format and ensure a structured, respectful debate, as well as keep track of time and ensure that all groups participate.
- **Group Presentations** (max 1h15). Each group presents their case in 10-12 minutes. Other groups may ask clarifying questions (2 minutes per question).
- Open Debate: Evaluating Different Approaches (max 2h30).

Possible Debate Topics:

- Should economic growth outweigh environmental and health concerns?
- How can communities be more actively involved in risk mitigation?
- What are the biggest policy gaps in addressing mine contamination?

Debate Format:

- Groups take turns debating the strengths/weaknesses of different approaches.
- The moderator encourages evidence-based arguments and real-world implications
- Closing Statements & Collective Conclusions (max 2h).

Each group have a short meeting to discuss the group Final Statement (15 min):

- What did they learn from the debate?
- How would they refine their recommendations based on feedback?
- What policy actions are most urgent?

Final Collective Reflection:

- What are the key points of the debate?
- What would be the next steps?
- How can interdisciplinary collaboration improve risk evaluation on a real scenario?
- Student Assessment (max 1h):
 - What was the most valuable part of the PBL experience?
 - How did this debate challenge or change your perspective on the balance between Public Health Risks and Economic Benefits?
 - What skills did you develop or improve? (e.g., teamwork, research, communication).

POST PROJECT: For Teacher Use

Reflections

- **Individual Reflection:** Critical analysis reflecting on what students learned about environmental contamination, health risks, and the importance of evidence-based decision-making.
- **Group Reflection:** Conduct a whole-class discussion or survey to evaluate the group dynamics, collaboration, and the impact of the stakeholder role-play on learning outcomes.
- Teacher Reflection: Analyse the effectiveness of strategies, student engagement, and the authenticity of the project.

Outcomes

Did students:

- ✓ Demonstrate critical thinking by analysing data and forming evidence-based arguments?
- ✓ Understand the interplay between public perception, environmental health, economics, and policymaking?
- ✓ Effectively collaborate and communicate in a simulated decision-making process?

Formative Assessment:

Guide students' learning by providing continuous feedback before the final assessment.

- Review of data analysis and stakeholder position statements
- Peer and teacher feedback on practice debates
- Encourage self-reflection and revision of arguments

Teacher's Role:

- Provide feedback on accuracy, logical reasoning, and data driven research.
- Encourage students to consider multiple perspectives and strengthen their arguments.
- Before the final debate, students participate in practice sessions.

Summative Assessment:

Assess students' ability to synthesize their learning and apply it to a real-world context.

- Evaluate final presentations at the municipal assembly based on clarity (How well students articulate key points), evidence use (Integration of data and case studies), and persuasiveness (Strength of arguments and engagement with counterpoints).
- ✓ Assess individual reflections for depth of understanding and personal growth.

Teacher's Role:

- Assess how well students balance scientific reasoning, policy implications, and stakeholder concerns
- Provide feedback on their ability to advocate for sustainable solutions

Rubric for Assessment:

A structured rubric ensures clear expectations and consistency in evaluation. Below are suggested assessment categories including categories for critical thinking, collaboration, data analysis, communication, and creativity.

Category	Criteria
Critical Thinking	Demonstrates logical reasoning, problem-solving, and evaluation of evidence.
Collaboration	Effectively works with peers, respects different perspectives, and contributes to group discussions.
Data Analysis	Accurately interprets environmental and health data, integrating findings into arguments.
Communication	Clearly articulates ideas, engages in debate, and uses persuasive techniques.
Creativity	Proposes innovative and sustainable solutions to environmental risks.

THE OREVALLEY DOSSIER

ID_Documents	Source
Facts about OreValley	Municipality
Aerial photo of the region	Municipality
Economic impact of the Mining Company on OreValley	Municipality
Environmental and food contamination report	EcoCypher (analysis performed by an independent and validated Lab)
Surface water analysis report	EcoCypher (analysis performed by an independent and validated Lab)
Human biomonitoring report	EcoCypher (analysis performed by an independent and validated Lab)

Somes facts about OreValley village:

- <u>Total village population</u>: 2 000 residents (~150 are miners)
- <u>Climate</u>: hot and dry conditions during the summer and very cold, rainy and windy conditions in the winter, snow fall is frequent, particularly above the altitude of 700 m. The average annual rain precipitation in the region is 1200–1400 mm. The average annual temperature is around 14°C/ 57°F, ranging from 0°C/ 32°F during the winter to about 35°C/95°F in the summer
- <u>Mine Company history</u>: Established for more than 50 years. Tin-tungsten mineralization also comprises several sulphides, carbonates and silver sulfosalts. Years of mineral extraction and processing produced crushed and milled wastes stored in 4 large tailings and open-air impoundments (TLI1-TL3). One close to the Mining Company Offices and near a river, both are disactivated and stabilized in geotechnical terms, while the other 2 are still being fed with debris from mining operations

Report _Ec	onomic Impact of the Mining Company on OreValley (data from the last 20 years)
PBL title:	Mining Controversies: Public Health Risks versus Economic Benefits
Disclaimer	This data is purely fictional and intended for illustrative purposes in the "Mining Controversies: Public Health Risks versus Economic Benefits" problem-based learning scenario
Employment:	Total village population: 2 000 residents
	Employment before mine: 40% (800 employed)
	Employment after mine: 60% (1,200 employed)
	Jobs created by the mine: 400
Local Economic	Increase in local business/commerce revenue: 25%
services):	 New businesses and commercial activities established related to mining operations: 20 (e.g., supply stores, safety equipment, food services)
Investment in local	 Roads: 800.000 €
	 Railroads: 100.000 €
	 Schools and education: 200.000 € (including annual university grants for the best students from underprivileged families to support higher education opportunities
	 Healthcare facilities: 300.000 €
	 Water and sanitation: 150.000 €
Economic Contributions:	 Annual contribution to local government (taxes, fees): 1.000.000 €
	 Community development funds: 80.000 € per year
Others	 Construction of OreValley Sports Centre: 90.000 €
	 Old-Theatre restoration: 39.000 €
	 Promotion of social activities (Summer Music Festival): 25.000 € per year
Potential economic growth with the mine expansion:	 Projection shows a 50% increase in employment and economic benefits
Potential future investments	 Shopping centre Nursing homes and day centres Nurseries

Report	_Enviro	onmental	and food	d contami	ination		
PBL title:	Mining C	Mining Controversies: Public Health Risks versus Economic Benefits					
Disclaimer	This data Health R	This data is to be used for illustrative purposes in the "Mining Controversies: Public Health Risks versus Economic Benefits" problem-based learning scenario					
OreValley	Date of s	Date of sampling: last 2 months					
Road dusts (n=12)		(mg kg-1)	Mean	Range			
		As	827	62–3565			
		Cd	5.5	0.3–19			
		Cr	20	9–30			
		Cu	346	52–766			
		Pb	45	14–128			
		Zn	462	110–1262			
Vegetables: cabbage (n=29) and	Cabbag	e (roots) (m	ıg kg-1)		Cabbage (leaves) (m	g kg-1)
potatoes (n=11)		Mean	Range	;		Mean	Range
	As	20	1.6–52	2	As	1.4	0.2–2.9
	Cd	0.4	0.1-0.7	7	Cd	0.2	0.1-0.4
	Cr	56	2.2–24	4	Cr	2.4	1.6–3.7
	Cu	23	8.8-43	3	Cu	5.1	3.7–7.7
	Pb	6.1	0.9–11.	.4	Pb	0.4	0.1-1.5
	Zn	134	62–23	7	Zn	64	25–115
	Potato (roots) (mg	(g-1)		Potato (tu	bbers) (mg	kg-1)
		Mean	Range	2		Mean	Range
	As	15	4.4-22	2	As	0.8	0.2–1.4
	Cd	2.1	0.3-4.7	7	Cd	0.1	0.04-0.13
	Cr	7.1	3.0-15	5	Cr	1.8	1.4–2.5
	Cu	20	12–28	;	Cu	8.9	7.8–9.9
	Pb	2.4	1.1–3.1	1	Pb	0.5	0.1-1.5
	Zn	71	49–92		Zn	23	17–30
Soil Samples (n=4)		(M				
		(mg kg-1) As	M	ean 18			
	Cd		2	4.1			
	Cr		2	206			
		Cu	1	122			
		Mn	1	169			
	Ni 41		41				
		Pb Zn		24			
		211		000			

Erasmus+ Project 2021-1-FR01-KA220-HED-000030081 ToxLearn4EU - Toxicology Innovative Learning for Europe

Soils (guidelines)	(mg kg	1) Mean World	Normal	Maxin	num content	Median values for	Guideline values
	As	SOILS	ranges in s	soils in nor	mai soils	the region soils	for the region soils
	Cd	0.3	0.1-40) >	40	0.1	0.2
	Cr	80	5–150	- D	150	21	21
	Cu	25	2–250)	100	16	16
	Mn	700	20-10.0	00	2000	393.5	-
	Ni	20	2–750)	80	16	16
	Pb	17	2–300)	100	21	21
	Zn	70	1–900)	300	54.5	55
UpValley	Date	of sampling: I	ast 2 mon	ths			
Road dusts (n=8)	(mg kg-1)	Mean	Range	е		
		As	14	29–177	77		
		Cd	4.8	0.2-1	5		
		Cr	13	9–20)		
		Cu	590	62-237	79		
		Pb	15	6–25	;		
		Zn	448	45-102	28		
Vegetables: cabbage (n=29) and	Cabbag	e (roots) (m	g kg-1)		Cabba	ge (leaves) (m	g kg-1)
potatoes (n=11)	0000002	Mean	Rang	ve.	000000	Mean	Range
	Δs	0.4	0.01_	0.8	Δs	0.2	
		0.4	0.01	0.0		0.2	0.1-0.4
	Cu	0.1	0.01-	0.1	Cu	0.1	0.02-0.1
	Cr	2.0	1.1-3	5.9	Cr	1.2	0.8-1.5
	Cu	32	2.1-2	64	Cu	7.4	2.3-41
	Pb	2.1	0.03–1	.7.5	Pb	0.4	0.1–1.6
	Zn	55	17–2	49	Zn	41	16-108
	Potato (roots) (mg kg-1) Potato (tubbers) (mg			kg-1)			
		Mean	Range			Mean	Range
	As	1.7	1.3–2		As	0.2	0.1-0.2
	Cd	0.7	0.4-1.0)	Cd	0.1	0.03-0.13
	Cr	1.9	1.8-1.9)	Cr	0.9	0.8-0.9
	Cu	21	19–23		Cu	6.9	6.8–6.9
	Pb	1.3	0.9-1.7	,	Pb	0.001	0.001-0.002
	7n	132	778-18	5	7n	25	23-26
	211	102	//0 10	<u> </u>	211	23	20-20
Soil Samples (n=4)	(mg kg-1)	Mea	in			
	A	\s	14				
	(Cd	2				
	(Cr	148	3			
	(Cu	37	,			
	1	٩n	29	7			
		li	20				
	I I	n Dh	22	2			
	-	n Zn	200				
	4	-11	20	'			

ning Controversies: Public Health Risks versus Economic Benefits
is data is to be used for illustrative purposes in the "Mining Controversies: Public alth Risks versus Economic Benefits" problem-based learning scenario
r i

OreValley surface water analysis

Date of sampling: last 2 months

Table 1: pH, electrical conductivity, major ions (CI-, SO42-, Na+, K+, Mg2+ and Ca2+) (mg L-1) and trace elements (μ g L-1) in surface waters (n = 8)

	Upstream the (UpV	e mine tailings alley)	Downstream the mine tailings		"River" ta	ge water		
	SW1	SW2	MTL1	MTL2	MTL3	RT1	RT2	RT3
рН	6.8	7.1	4.3	5.7	5.7	3.0	2.9	3.2
Conductivity	59	37	350	1,088	851	3,63	4,4	2,02
Si	10	12	18	16	16	103	108	99
Cl	5	4	5	7	6	5	6	4
SO4	4	4	152	605	441	2,991	3,717	1,398
Na	6	4	5	12	10.4	17.8	19.3	11.8
К	1	0.3	1	5	4	6	0.1	1
Mg	1	1	23	73	56	274	357	103
Ca	3	1	22	120	87	287	401	175
Al	13	7	1,5	800	600	149	161	99
As	2	4	5	13	13	2,138	544	146
Ва	4	1	20	17	39	36	29	25
Cd	0.2	0.2	15	58	40	464	393	226
Co	0.3	0.2	6	84	60	2,621	3,33	1,144
Cu	6.3	3	190	600	510	42,7	54,3	20,1
Fe	40	<30	100	100	290	82,5	91	9,4
Li	<4	<4	32	140	101	1,173	1,01	751
Mn	19	4	1,1	7	4,1	88,7	92,6	22,3
Ni	<1	1	110	273	200	2,153	2,827	1,137
Pb	<0.3	<0.3	<22	<22	<22	<22	<22	<22
Rb	2.5	0.6	<18	36	28	76	37	31
Sr	18	9	75	338	256	658	507	380
Zn	18	21	2	6,3	4,8	49,2	44,5	21,9

SW1	"River" water collected upstream the mine tailings (UpValley)
SW2	"River" water collected upstream the mine tailings (UpValley)
MTL1	"River" water collected downstream the mine tailings (1)
MTL2	"River" water collected downstream the mine tailings (2)
MTL3	"River" water collected downstream the mine tailings (3)
RT1	Seepage waters collected in Rio tailings
RT2	Seepage waters collected in Rio tailings
RT3	Seepage waters collected in Rio tailings

Report _Human biomonitoring											
PBL title:		Mining Controvers	sies: Public Health Ri	sks versus Econo	omic Benefits						
Disclaimer		This data is to be u Health Risks versu	sed for illustrative purp s Economic Benefits" p	oses in the "Mining roblem-based lear	g Controversies: P ning scenario	ublic					
Results of metal(loid) quantification in different matrices from 3 groups of participants											
Group characteristics and Ethical considerations:	 T E a a	Three groups participa group living/working or Each village group wa average age of 47 yea consisted of 10 health vorking on similar task All subjects were fully each of them signed a obtained from an indep All participants provide camples were quantifie or by ICP-OES for Ca,	ted in the study, a ground in UpValley (n=20) and its s comprised by healthy irs, not working in the M y men who were never is in the Mining Compa- informed about the pro- n informed about the pro- n informed consent price bendent Ethical Board. ad blood (B), fingernails ad blood (B), fingernails ad by ICP-MS for As, C Cu, Fe, K, Mg, Na, S,	IP living/working in a group of Miners male individuals, I fine Company. Th smokers, with an a ny for at least 9 ye cedures and objec or to the study. Eth (FN), toenails (TN d, Cr, Hg, Mn, Mo, Si and Zn levels.	OreValley (n=20) (n=10) never smokers, wi le Miners group average age of 42 ears. tives of the study a ical approval was I) and hair (H). Bio , Ni, Pb, and Se le	, a th an years, and ological vels;					
Main results: Internal Dose Biomarkers											
(only statistically significant results are shown)											
		Group OreValley (n=20)	Group UpValley (n=20)	Miners (n=10)	Statistical significance						
As-FN (µg/g)		0.61 ± 1.04	0.14 ± 0.10	1.31 ± 2.88	*P<0.05						
AS-TN (μ g/g)		0.05 ± 0.56	0.22 ± 0.30	1.01 ± 2.30	^P<0.05						
$A_2-II(ha/a)$		0.14 ± 0.13	0.12 ± 0.14	0.32 ± 0.32	F < 0.03 *P<0.05						
	eat)	1 58 +0 83	1 23 +0 98	1 12 +0 68	*P<0.05						
$Cr-TN (\mu g/g Clear)$		2.17 ± 2.41	1.19 ± 0.99	0.91 ± 0.92	*P<0.05						
$Cr-H(\mu g/g)$		0.07 ± 0.08	0.07 ± 0.06	0.18 ± 0.33	*P<0.05						
Cu-B (mg/L)		0.02 ± 0.24	1.39 ± 0.59	1.95 ± 0.11	*P<0.05						
Mg-B (mg/L)		30.18 ± 4.16	27.62 ± 4.74	28.27 ± 3.44	*P<0.05						
Mn-U (µg/g creat)		3.07 ±2.52	1.51 ±2.32	1.45 ±0.91	*P<0.05						
, Mn-TN (μg/g)		2.84 ± 3.17	1.25 ± 1.29	1.98 ± 3.19	*P<0.05						
Mn-H (μg/g)		0.77 ± 0.69 1	0.70 ± 0.84 0	1.50 ± 1.65	*P<0.05						
Pb-B (µg/L)		34.08 ± 39.39	36.01 ± 25.81	63.72 ±58.56	*P<0.05						
Pb-U (µg/g creat)		2.81 ± 5.3	2.43 ± 2.26	4.59 ± 6.82	*P<0.05						
Pb-H (µg/g)		1.45 ± 23.02	1.55 ± 2.92	3.02 ± 3.00	*P<0.05						
Zn-H (µg/g)		176.47 ± 89.28	158.49 ± 80.4	196.30± 88.48	*P<0.05						

Erasmus+ Project 2021-1-FR01-KA220-HED-000030081 ToxLearn4EU - Toxicology Innovative Learning for Europe

Potential confounding variables:		Group OreValley	Group
	Water consumption	Orevalley	opvalley
	Bottled water	7%	5%
	Tap water	56%	51%
	Spring water	37%	44%
	Fish consumption:		
	0-2 portions/week	61%	47%
	>2 portions/week	39%	53%
	Agriculture:		
	No	34%	15%
	Yes	66%	85%

