AN INTRODUCTION TO DOSE RATE MODELLING IN NON-HUMAN BIOTA WITH

The ERICA tool

BEN JAESCHKE

DECEMBER 2023

The ERICA tool

Environmental Risk from Ionising Contaminants: Assessment and Management

The ERICA consortium

DSA Direktoratet for strålevern og atomsikkerhet

Australian Government Australian Radiation Protection and Nuclear Safety Agency

Strål

säkerhets myndigheten Swedish Radiation Safety Authority

Developed by a number of European Radioecology ALLIANCE members

Project partners: SSM, SKB, SUC, AFRY, GSF, CIEMAT, IRSN, EDF, EA, WSC, UniLiv, CEH, UMB, STUK & DSA

The ERICA tool timeline

First release – 2007

Version 1.2 - 2014

Version 1.3 - 2019

Version 2.0 - 2021

Current: v.2.0.221

Use of the ERICA tool

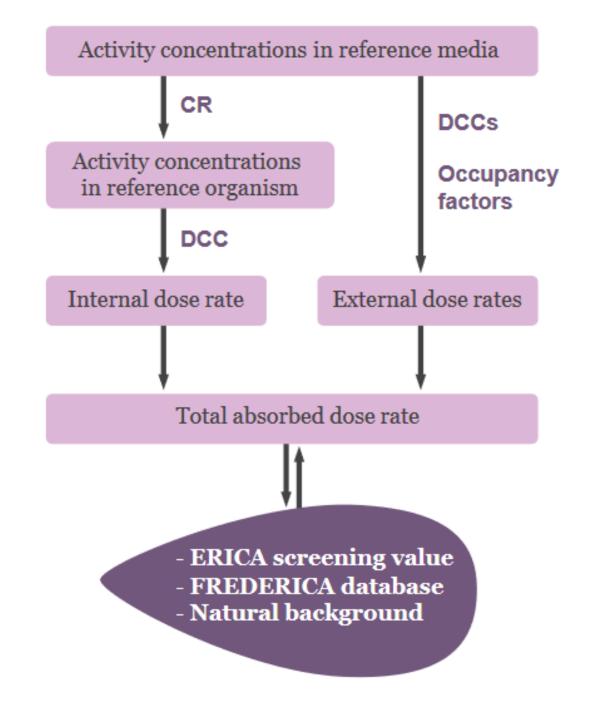
Modelling of radiological risk to **non-human biota**

Simple concept: Uses <u>activity concentrations</u> in media/tissues to calculate dose rate

Application/situation entirely depends on your input data and/or conceptual design

Tiered approach options

Spatial and temporal data supported



Calculations

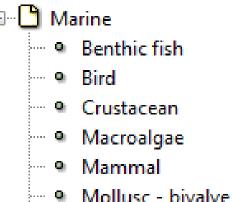
CR – Concentration ratio

DCC – Dose conversion coefficient

Reference organism (similar concept to RAPs)

Reference organisms

13 different **Reference organism** types in each of three ecosystems Terrestrial, freshwater and marine


Represent the **diversity** of organisms likely to exist at a typical site* *Focus on European environments

Reference organisms

- Terrestrial
 Amphibian
 Annelid
 Arthropod detritivorous
 - Bird
 - • Flying insects
 - Grasses & Herbs
 - Lichen & Bryophytes
 - 🗝 Mammal large
 - Mammal small-burrowing
 - Mollusc gastropod
 - 🗝 Reptile
 - Shrub
 - 🛄 🍳 Tree

- 📲 💾 🕒 🕒
 - 🗝 Amphibian
 - Benthic fish
 - 🗝 🖲 Bird
 - 🔍 🍳 Crustacean
 - 🔍 🍳 Insect larvae
 - 🗝 🍳 Mammal
 - Mollusc bivalve
 - Mollusc gastropod
 - 🗝 🔍 Pelagic fish
 - Phytoplankton
 - ···· 🍳 Reptile
 - 📟 🍳 Vascular plant
 - 🤐 🌒 Zooplankton

- Pelagic fish
- Phytoplankton
- Polychaete worm
- 🔍 🍳 Reptile
- Sea anemones & True coral
- 🔍 🍳 Vascular plant
- 🛄 🍳 Zooplankton

Add custom organisms

Organisms	Selected organism data						
Organisms	Name						
+ 🖸 Freshwater	Ecosystem						
H G Terrestrial	Wildlife group						
	Specimen						
	Mass (Kg)	Add Organism					
	Ksi	To create your own geometry for an organism, press the Add button located underneath the list of organisms tree box					
	Chi						
	Height over ground (m)	You can also import several organisms into ERICA database following these instructions:					
	Comment:	Import organisms data					
		Open guidance Open a help document that describes how to fill in template file with your organism data. Read before using the template.					
		Open template Click to open a formatted Excel file in which you can fill in your organism data. You will first be prompted to select a convenient folder to save the Excel file (.xls);					
		review the file name and click on Save. ERICA will automatically open the template after you have clicked on Save.					
		Import organisms Click to import the organisms data from a convenient formatted Excel file.					

Integrated DCC calculation

Integration of **BiotaDC**

(ICRP-136 methodology)

Collaboration between AFRY and ICRP BiotaDC developer

(Alexander Ulanovsky)

Ecosystem	⊖ aquatic) te	errestrial					
Type of terrestrial organism) fauna) flo	ra					
Exposure	Pathway	in	iternal	~				
Mass of organism	Mass [kg] 1.0				[10 ⁻⁶ 10 ³			
Shape of organism	Shape	1: 1.0			1	1.0		[0 1
Radionuclide	Element			•	Ma	ass number		
Effect of radioactive progeny	Method	tim	ne-integral a	ctivities ra	atio	~ Tim	e [d]	365.2425

ICRP, 2017. Dose coefficients for nonhuman biota environmentally exposed to radiation. ICRP Publication 136. Ann. ICRP 46(2).

Radionuclides

Starts pre-loaded with **101 radionuclides**

- 'Add radioisotope' feature to include and parameterise an additional 711
- Includes noble gases

Radionuclide progeny is automatically generated and included in the calculations

- Includes branching ratio

Next update will include the **automatic** generation and inclusion of **radon/thoron** from radium

Integrated transport models

IAEA SRS-19 dispersion models

Can be used if activity concentration data in environmental media are unavailable

Terrestrial

- Air

Freshwater

- Small lake
- Large lake
- Estuary
- River

Marine

- Coastal
- Estuary

Databases of parameters

Concentration ratios – collaboration with the UK CEH Wildlife Transfer Database

- CR gap-filling tool helps give the next-best solution for where data is absent

DCCs included and generated within the tool (from BiotaDC)

All databases can be user-edited for site-specific data

FREDERICA effects-database integration

Concentration ratio gap-filling

Nuclide	Amphibian	Benthic fish	Bird	Crustacean	Insect larvae	Mammal	Mollusc - bivalve	₽	Select ERICA default CR values
Ac	4.79E3	1.13E3	2.91E3	3.35E4	3.35E4	4.79E3	3.35E4	^	Method used to derive ERICA default CR value when no empirical data:
Ag	3.00E2	2.00E3	3.50E2	2.07E4	2.07E4	3.50E2	6.36E3		A Bayesian approach or methods to derive a missing SD value
Am	4.79E3	1.49E3	2.91E3	3.35E4	3.35E4	4.79E3	3.35E4		applied to empirical datasets
Ar	0	0	0	0	0	0	0		✓ 1 Similar reference organism
At	3.10E2	3.10E2	3.10E2	8.00E1	8.00E1	3.10E2	8.00E1		2 🗌 From published review
Ba	1.70E2	4.28E3	1.85E3	1.07E3	3.86E4	1.85E3	3.86E4		
Bi	1.30E2	1.30E2	8.70E1	1.52E2	8.21E1	1.30E2	6.83E2		3 🔲 Modelling approaches
с	1.80E5	1.80E5	1.80E5	1.80E5	1.80E5	1.80E5	1.80E5		🗹 4 🔲 Element of similar biogeochemistry for reference organism
Ca	8.97E2	2.97E4	1.37E3	6.60E2	4.29E1	3.93E2	2.11E5		5 Element of similar biogeochemistry for similar reference organism
Cd	2.00E3	1.76E3	1.89E3	3.00E4	3.00E4	2.00E3	1.67E4		5 Element of similar biogeochemistry for similar reference organism
Ce	9.30E0	1.58E2	8.35E2	4.39E3	4.39E3	8.35E2	4.39E3		🗹 6 🗧 Highest transition metal for reference organism
Cf	4.79E3	1.13E3	2.91E3	3.35E4	3.35E4	4.79E3	3.35E4		7 Estuarine data
СІ	1.02E3	1.02E3	1.02E3	1.02E3	1.02E3	1.02E3	1.02E3		
Cm	4.79E3	1.13E3	2.91E3	3.35E4	3.35E4	4.79E3	3.35E4	¥	🗹 8 🔲 Highest animal value
	<						>		9 🔲 Highest plant/algae value
Select a cell to edit								^	
Edit Value Edit Distribution									✓ 10 Combined methods*
Edit value and comment for selected cell(s)									Select/Unselect all check boxes
Value Comment Comment									*Using a combination of the above approaches.

FREDERICA effects database

Risk Background Effects	Tables Plots Rules	Record dec	ision	
is tab contains summarise radio			iidance	
the types of effects that may b	oe seen at given dose ra	ites.		
Drganism				
Mammal 🗸 🗸				
Effects				
Dose rate range [µGy h-1]	Dose rate [µGy h-1]	Species	Endpoint	Effect
0-50	10.0) Otter	MB	Minor decrease of body weight (10% reduction). No statistically significant effect on hair density
	16.0) Mice	MB	No statistically significant effect on body weight
	42.0) Vole	MB	Minor decrease of peripheral blood cells (15-50% reversible reduction)
	10.0) Otter	MT	Moderate decrease of otter population density (33% reduction)
	16.0) Mice	MT	Significant increase of life span (1.3 times the control value)
50-100	71.0) Dog	MT	Moderate decrease of life-span (30% decrease)
	80.0) Vole	MB	Major effect in percentage of voles infected with ectoparasites and low-fatness voles in population (3- fold increase)
	100.0) Mice	RC	Moderate decrease in fecundity (35% reduction in number of offspring sired and weaned; LOEDR)
	100.0) Mice	RC	Major decrease of male fertility (50% reduction of fertile pairs after male irradiation; LOEDR)
100-200	150.0) Mice	MT	No statistically significant effect on life span
	104.0) Pigs	RC	Major effect in male reproductive organs (59% reduction in number of primitive stem germ cells and sperm production; LOEDR)
	190.0) Mice	RC	No statistically significant effect on fertility and fecundity of F1 and F2
	190.0) Mice	RC	Major decrease of fecundity (60% reduction in litter size) and severe decrease in fertility (85% reduction in fertile females) in F3 and F4
	195.0) Mice	RC	Major decrease in fecundity of F1 and F2 (50% reduction in early survival)
200-400	291.0) Squirrel	MB	No pathological changes in liver, kidney, lungs or spleen
	240.0) Rats	MT	Major decrease of life span (45% decrease)
) Vole	MUT	Severe increase in the frequency of unstable chromosomal aberrations in bone marrow cells (3-fold increase)
) Rats	RC	Moderate effect in female reproductive organs (30% reduction in number of oocytes)
) Pigs	RC	Major effect in female reproductive organs (57% reduction in number of germ cells) and severe effect in male reproductive organs (8
<	333.0) Mice	RC	Maior effect in female reproductive organs (48% reduction in number of primary oocytes)

Thank you

